

FINAL CA – November 2017

ADVANCED MANAGEMENT ACCOUNTING

Test Code –
Branch (MULTIPLE) (Date: 04.06.2017)

(50 Marks)

Note: All questions are compulsory.

Question 1(5 Marks)

- a. Under the Hungarian Assignment Method, the prerequisite to assign any job is that each row and column must have a zero value in its corresponding cells. If any row or column does not have any zero value then to obtain zero value, each cell values in the row or column is subtracted by the corresponding minimum cell value of respective rows or columns by performing row or column operation. This means if any row or column have two or more cells having same minimum value then these row or column will have more than one zero. However, having two zeros does not necessarily imply two equal values in the original assignment matrix just before row and column operations. Two zeroes in a same row can also be possible by two different operations i.e. one zero from row operation and one zero from column operation.
- b. The order of matrix in the assignment problem is 4 × 4. The total assignment (allocations) will be four. In the assignment problem when any allocation is made in any cell then the corresponding row and column become unavailable for further allocation. Hence, these corresponding row and column are crossed mark to show unavailability. In the given assignment matrix two allocations have been made in A24 (2nd row and 4th column) and A32 (3rd row and 2nd column). This implies that 2nd and 3rd row and 2nd and 4th column are unavailable for further allocation. Therefore, the other allocations are at either at A11 and A43 or at A13 and A41.

Question 2(8 Marks)

The cumulative average time per batch for the first 25 batches (3 marks)

The usual learning curve model is

 $v = ax^t$

Where

y = Average time per batch (hours) for x batches

a = Time required for first batch (hours)

x = Cumulative number of batches produced

b = Learning coefficient

The Cumulative Average Time per batch for the first 25 batches

 $y = 1,000 \times (25)^{-0.322}$

 $\log y = \log 1,000 - 0.322 \times \log 25$

 $\log y = \log 1,000 - 0.322 \times \log (5 \times 5)$

 $\log y = \log 1,000 - 0.322 \times [2 \times \log 5]$

 $\log y = 3 - 0.322 \times [2 \times 0.69897]$

 $\log y = 2.549863$

y = antilog of 2.549863

y = 354.70 hours

(ii) The time taken for the 25th batch(2 marks)

Total Time for first 25

batches = 354.70 hours × 25 batches

= 8,867.50 hours

Total Time for first 24 359.40 hours × 24 batches = 8,625.60

batches = hours

Time taken for 25th batch = 8,867.50 hours - 8,625.60 hours

= 241.90 hours

(iii) Average 'Selling Price' of the final 500 units(3 marks)

Particulars	Amount (`)
Direct Labour [(8,867.50 hrs. + 241.90 hrs. × 25 batches) × `	
6]	89,490
Add: Other Variable Costs (5,000 units × ` 19)	95,000
Add: Fixed Costs	40,000
Total Life Cycle Cost	2,24,490
Add: Desired Profit	80,000
Expected Sales Value	3,04,490
Less: Sales Value (4,500 units × `64)	2,88,000
Sales Value (Decline Stage)(A)	16,490
Sales Units (Decline Stage)(B)	500
Average Sales Price per unit(A)/(B)	32.98

Question 3(5 Marks)

Basis	Skimming Price	Penetration Pricing
Meaning	Pricing Policy of highly pricing a	Pricing Policy of entering the market
	product at the entry level into the	with a low price, then establishing the
	market and reducing it later.	product and then increasing the price.
Use	This method is preferred in the	This is used by companies with
	beginning because in the initial	established markets, when products
	periods when the demand for the	are in any stage of their life cycle, to
	product is not known the price	avoid competition. This is also known
	covers the initial cost of	as "stay-out pricing".
	production.	
Target	It is used when market is price	It is a policy of using a low price as
Market	insensitive, demand inelastic or to	the principal instrument for
	recover high promotional costs	penetrating mass markets early.
Example	Electronic goods, mobile phone,	Entry of a new model small segment
	TVs, etc.	car into the market.

Question 4(8 Marks)

Let the P_1 , P_2 and P_3 be the three products to be manufactured. Then the data are as follows:

Draduata	Product ingredients							
Products	Α	В	С	Inert Ingredients				
P ₁	5 %	10%	5%	80%				
P ₂	5%	5%	10%	80%				
P ₃	20%	5%	10%	65%				
Cost per kg (`)	64	16	40	16				

Cost of Product P1

$$= 5\% \times `64 + 10\% \times `16 + 5\% \times `40 + 80\% \times `16 = `19.60 \text{ per kg}$$

Cost of Product P2

- = 5% × `64 + 5% × `16 + 10% × `40 + 80% × `16
- = `20.80 per kg.

Cost of Product P3

- = 20% × `64 + 5% × `16 + 10% × `40 + 65% × `16
- = `28.00 per kg.

Let x_1 , x_2 , and x_3 be the quantity (in kg) of P_1 , P_2 , and P_3 respectively to be manufactured. The LP problem can be formulated:

Objective function: (2 marks)

Maximize Z = (Selling Price – Cost Price) × Quantity of Product
=
$$(^32.60 - ^19.60) x_1 + (^34.80 - ^20.80) x_2 + (^36.00 - 28) x_3$$

$$= 13x_1 + 14x_2 + 8x_3$$

 $x_1 + 2x_2 + 2x_3 \le 2,400$

Subject to Constraints: (6 marks)

$$1/20x_1 + 1/20x_2 + 1/5x_3 \le 100$$

$$Or \qquad x_1 + x_2 + 4x_3 \le 2,000$$

$$1/10x_1 + 1/20x_2 + 1/20x_3 \le 180$$

$$Or \qquad 2x_1 + x_2 + x_3 \le 3,600$$

$$1/20 x_1 + 1/10 x_2 + 1/10 x_3 \le 120$$

$$x_1 \leq 30$$

and $x_1, x_2, x_3 \ge 0$

Question 5 (9 Marks)

Or

Impact on Profit of Continuance of Production by Renewing the Lease (3 marks)

(`in lakhs)

			Fac	tories	
		Α	В	С	Total
Sales	(A)	600	2,400	1,200	4,200
Less: Variable Cos	st				
Raw Materia	al	150	700	290	1,140
Direct Labou	ır	150	560	280	990
Factory Ove	rheads (Variable)	40	220	110	370
Selling Over	heads (Variable)	46	140	80	266
Total Variable Co	sts(B)	386	1,620	760	2,766
Contribution	(C) = $(A) - (B)$	214	780	440	1,434
Less: Fixed Cost					
Factory Ove	rheads (Fixed)	80	240	120	440
Selling Over	heads (Fixed)	30	100	60	190
Administration	on Overheads	40	180	80	300
Head Office	Expenses	24	100	60	184
Additional Lo	ease Rent	24	-	-	24
Total Fixed Costs	(D)	198	620	320	1,138
Profit	(C)–(D)	16	160	120	296

The above statement shows that though profit is reduced from existing `320 lakhs to `296 lakhs, still factory 'A' generates a contribution towards head office expenses

	When Pro	oduction o	of Factory	When Production of Factory				
	A is Tran	sferred to	Factory B	A is Transferred to Factory C				
	В	С	Total	В	С	Total		
Sales	3,000	1,200	4,200	2,400	1,800	4,200		
Less: Variable Costs	2,065	760	2,825	1,620	1,196	2,816		
Contribution	935	440	1,375	780	604	1,384		
Less: Fixed Costs	720	320	1,040	620	400	1,020		
Profit	215	120	335	160	204	364		

Since transfer of production of factory 'A' to factory 'C' yields higher profit, i.e., `364 lakhs, this course is recommended.

Workings
Variable and Fixed Costs When the Production of Factory 'A' is Transferred to Factory 'B'-(1 mark)

(`in lakhs)

	Sales	Variable Costs	Fixed Costs
'B'	2,400	1,620	620
'A'	600	405	
		<u>1,620</u> x 600	
		2, 400	
Additional Costs		40.00	100
		(80,000* ×`50)	
Total	3,000	2,065	720

^{(*) 80,000} units (`600 lakhs ÷ `750)

Variable and Fixed Costs when the Production of Factory 'A' is transferred to Factory 'C'-(1 mark)

('in lakhs)

	Sales	Variable Costs	Fixed Costs
,C,	1,200	760	320
'A'	600	380	
		`760 x600 1,200	
Additional Costs		56 (80,000 ×`70)	80
Total	1,800	1,196	400

Question 6 (7 Marks)

Random No. Coding for Fresh Cake (1 mark)

No. of Cakes	Probability	Cumulative Probability	Random Numbers
100	0.01	0.01	00 – 00
101	0.03	0.04	01 – 03
102	0.04	0.08	04 – 07
103	0.07	0.15	08 – 14
104	0.09	0.24	15 – 23
105	0.11	0.35	24 – 34
106	0.15	0.50	35 – 49
107	0.21	0.71	50 – 70
108	0.18	0.89	71 - 88
109	0.09	0.98	89 - 97
110	0.02	1.00	98 - 99

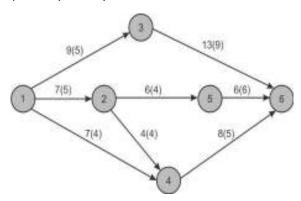
Random No. Coding for One Day Old Cake (1 mark)

No. of Cakes	Probability	Cumulative Probability	Random Numbers
0	0.70	0.70	00 – 69
1	0.20	0.90	70 – 89
2	0.08	0.98	90 – 97
3	0.02	1.00	98 – 99

Let us simulate the sale of fresh and one day old cakes for the next ten days using the given random numbers / information.

Simulation Sheet (3 marks)

Day	R. No.	Fresh	Demand	Sales	CI.	Order	One	R.N.	Sale	Loss
	of	Stock		Pcs.	Stock	Initiated	Day	of Old	of Old	Pcs.
	Fresh						Old	Cake	Cake	
	Cake						Stock		Pcs.	
1	37	105	106	105	0	110	0	17		
2	73	110	108	108	2	105	0	28		
3	14	105	103	103	2	105	2	69	0	2
4	17	105	104	104	1	105	2	38	0	2
5	24	105	105	105	0	110	1	50	0	1
6	35	110	106	106	4	105	0	57		
7	29	105	105	105	0	110	4	82	1	3


8	37	110	106	106	4	105	0	44		
9	33	105	105	105	0	110	4	89	1	3
10	68	110	107	107	3	105	0	60		
				1,054					2	11

Calculation of Vendor's Profit (2 marks)

	Amount (`)
Sales of Fresh Cakes (1,054 Pcs. × `7)	7,378.00
Sale of One Day Old Cake (2 Pcs. × `2)	4.00
Total Sales Revenue	7,382.00
Less:Cost of Cakes Sold[`4.50 × (1,054 + 2) Pcs.]	4,752.00
Less: Cost of Spoilt Cakes ['4.50 × (11 + 3*) Pcs.]	63.00
Profit	2,567.00

Question 7 (8 Marks)

The Network for the given problem (2 marks)

Different Paths, Normal Duration and Minimum Duration:

Path	Normal Duration (Days)	Minimum Duration (Days)
1–3–6	22	14
	(9 + 13)	(5 + 9)
1–2–5–6	19	15
	(7 + 6 + 6)	(5 + 4 + 6)
1–2–4–6	19	14
	(7 + 4 + 8)	(5 + 4 + 5)
1–4–6	15	9
	(7 + 8)	(4 + 5)

Critical Path is 1-3-6

Total Cost of the Project for the Normal Duration: (1 mark)

= Normal Cost + Overhead Cost + Penalty Cost = `6,000 + `150 × 22 Days

+ `80 × 3 Days

= `9,540

Crashing First Step: (2 mark)

Let us now crash activities on the Critical Path.

Activity	ΔΤ	ΔC/ΔΤ	Remark
1–3	4	100	Least Cost Slope
3–6	4	210	

As activity 1–3 has least cost slope, **crash activity 1–3 by 3 days at a crash cost of `100 per day.** Total Cost of the Project for the 19 Days:

= Normal Cost + Overhead Cost + Crashing Cost

= $^{\circ}6,000 + ^{\circ}150 \times 19 \text{ Days} + ^{\circ}100 \times 3$

Days

= `9,150

The Various Paths in the Network with Revised Duration are:

1–3–6 with Project Duration = 19 Days (Critical Path.1)

1–2–5–6 with Project Duration = 19 Days (Critical Path.2)

1–2–4–6 with Project Duration = 19 Days (Critical Path.3)

1–4–6 with Project Duration = 15 Days

Crashing Second Step: (2 marks)

Let us now crash activities on the Critical Paths.

Critical Path	Activity	ΔΤ	Δ C /ΔΤ	Remark
1	1–3	1	100	Least Cost Slope
	3–6	4	210	
2	1–2	2	90	
	2–5	2	50	Least Cost Slope
	5–6	-	-	-
3	1–2	2	90	
	2–4	-	-	-
	4–6	3	60	Least Cost Slope

Possible Crashing Alternatives are:

(1 mark)

Critical Path- Activities	1–3, 2–5 & 4–6	1–3 & 1–2*
Cost Slopes	2040	3400
(∆C/∆T)	`210	`190
	(`100 + `50 + `60)	(`100 + `90)
Remark	Independent Activities	Independent Activity
		+ Common Activity*

As crashing cost per day for every alternative is greater than `150 i.e. Overhead Cost per day. Therefore, any reduction in the duration of project will increase the cost of project completion.
Hence, the Lowest Cost of Completion is `9,150 with the Completion Time of 19 Days.
